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Non-positive matrix elements for Hamiltonians of spin-1 
chains 

Tom Kennedyt 
Depmmenr of Mathematics, University of Arizona, Tucson. AZ 85721, USA 

Received 2 June 1994 

Abstract. For a large class of one-dimensional spin-l Hamiltonians with open bounday 
conditions. we show that there is B unitary lcmsformation for which the off-diagonal matrix 
elemens of the transformed Hamiltonian a r ~  non-positive. We use this to show that the ground 
state of a finite chain is at most fourfold degenerate, and that the expectation of the string 
observable of den Nijs and Rommelse in the ground state is bounded below by the expectation of 
the usual N6el order panmeter. (This was proved for 3 smaller class of Hamiltonians by Kennedy 
and Tasaki.) The class of Hamiltonians to which our m u l s  apply include the general isotropic 
Hamiltonian z j [ S j  .Sf+ ,  -B(Sj .S,+I)~] for =- -1. Forthe usual Heisenberg Hamiltonim 
the transformed Hamiltonian is - I: .E+,  where the operators T = ( T I .  TY, TL) satisfy 
anticommutation relations like ITr, T r }  = TT. We c m  also use this transformation to obtain 
variatianal bounds on the ground-state energy. The transformation used here is closely related 
to the unitary operator introduced by Kennedy and Tasaki. 

The spin-1 chain has been the subject of a great deal of scrutiny since the discovery by 
Haldane that this chain behaves quite differently from the spin-; chain. The Haldane phase 
of the spin-1 chain is a phase in which there is a unique infinite-volume ground state with 
exponential decay of the correlations and a gap between the ground-state energy and the rest 
of the spectrum. ~Haldane argued that the usual Heisenberg antiferromagnet should be in 
such a phase [ 13. While there is no long-range order in the Haldane phase, there is a hidden 
order discovered by den Nijs and Rommelse [2]. They introduced a string order parameter 
to measure this order. Girvin and Arovas [3] numerically evaluated this order parameter 
and concluded it was non-zero for the usual Heisenberg Hamiltonian. Kennedy and Tasaki 
[4] introduced a non-local unitary transformation of the spin-1 chain which transforms this 
non-local order parameter into a simple local order parameter. 

In this paper we introduce a closely related unitary transformation of the spin-1 chain 
which also transforms the hidden order into explicit order and for which the off-diagonal 
matrix elements of the transformed Hamiltonian are all non-positive. Our results apply to 
the Hamiltonian 

where the parameters satisfy 

J;, J,!, J: z o ~ J,". J;, J; -pi 
t E-mail: tgk@math.arizana.edu 
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and the K,? are arbitraq. Throughout this paper we only consider open boundary conditions. 
For the isotropic Hamiltonian 

Erst . si,, - /%si . Si+l)21 (3) 

the condition is that fl z - 1. This includes the entire interval - 1 < ,O 4 1 in which the 
model is believed to be in the Haldane phase. 

The Perron-Frobenius theorem applies to matrices whose off-diagonal entries are all 
non-positive. To apply it one must determine which basis vectors are connected in the 
sense that we can go from one to the other via a sequence of non-zero matrix elements 
in the transformed Hamiltonian. We find that the set of basis vectors has four connected 
components. Hence the Perron-Frobenius theorem implies that the ground state is at most 
fourfold degenerate. For isotropic Hamiltonians this implies that the ground state must 
either be a singlet or a triplet. Our unitary transformation also yields a trivial proof that 
the expectation of the string order parameter in the ground state is greater than or equal to 
the expectation of the usual Nkel order parameter. This inequality was proved in [5] for a 
smaller class of Hamiltonians (pi = 0, J;" = J: and Kf = K,' = 0). Our transformation 
also leads to variational bounds on the ground-state energy. For the usual Heisenberg 
Hamiltonian we find that the energy per site is less than -1.401 4625. Finally, we note that 
this representation of the Hamiltonian with only non-positive off-diagonal matrix elements 
makes it possible to perform Monte Carlo simulations for all these Hamiltonians. 

The unitary transformation which we will define is somewhat complicated, but i& action 
on the Hamiltonian and the correlation functions is quite simple. So we will defer the 
definition of the transformation until later and for the moment concentrate on its results. 
Throughout this paper we will use the basis in which 

, / O  -i O \  

i 

We refer to this basis as the standard basis. Define three operators which act on a single 
site by 

T x =  (o 1 0 o )  0 Ty=(; 7 A) T I = ( :  8 ) .  
Let Dy = exp( i zy ) .  Explicitly, the action of the 0," on a single site is given by 

0 1 0  0 0 0  
(4) 

-1  0 0 1 0  -1 0 0 

Lemma 1. There is a unitary transformation V such that 

VS:SP,, V-l = -TPTP I ' + I  CY = x , y , z  (6) 

and 

V ( s y v - '  = (2-y (Y = x ,  y, z. (7) 
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Recall that the string order parameter of den Nijs and Rommelse is given by 

for cd = x ,  y and z .  If H is given by (1) and the parameters satisfy (2), then the off-diagonal 
matrix elements of VHV-’ in the standard basis are all non-positive. 

Remarks. 
1. The lemma says that the unitary operator V transforms Si . Si+’ into -Z . Ti+]. 

The operators SA, Sr, Si satisfy the usual commutation relations. It is amusing to note that 
the operators T x ,  TY, T z  satisfy the anticommutation relations [ T a ,  T a }  = TY where a, ,9, 
y is any permutation of x ,  y .  z. 

2. The non-positivity of the off-diagonal matrix elements of V H V - ’  in the standard 
basis is equivalent to H having non-positive off-diagonal matrix elements in the basis 
obtained by applying V-’ to the standard basis. The resulting basis is not simple, so 
throughout this paper we find it more convenient to apply the unitary transformation to the 
Hamiltonian rather than to the standard basis. 

Proof. We defer the proofs of (6), (7) and (8) until later. The proof of the last sentence 
in the lemma is as follows. Equation (6) shows that the off-diagonal matrix elements of 
VSi.Si+, V-’ are non-positive and hence the same is true for V[S, .S,+j  - , ~ ( S ~ . S ~ + I ) ’ ] V - ’  
if ,9 > 0. To show that it is true for ,9 -1 takes a little computation. Define 

hi = V [ S i  . S,+l - B(Si . si+l)2Jv-1 = -Z . E+’ - ,9(Z . Z+’)2 

where T is the vector of operators (TI ,  TY, TL), Then the non-zero matrix elements of hi 
are 

where A and B can be 0, + or - and A # B. This shows that the off-diagonal elements 
of hi are all non-positive if ,9 > -1. 

The proof of the lemma is completed by noting that the Hamiltonian (1) with the 
parameters satisfying (2) can be written as a linear combination of h;, -YTi;], -qvq:,, 
- q T L 1 ,  (Y)’. (Ty)’ and (T:)’ with all the coefficients non-negative except possibly 
the coeffecients of the last three operators. The last three operators are diagonal and all 
the other operators have non-positive off-diagonal matrix elements, so H has non-positive 
off-diagonal matrix elements. 0 

Our first application of the ‘good signs’ of the transformed Hamiltonian is the following. 
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Theorem 2. The ground state of the Hamiltonian (1) with the parameters satisfying (2) is 
at most fourfold degenerate. If the Hamiltonian is isotropic (J: = J; = J: and KY = 0), 
then the total spin of the ground state is either 0 or 1 (or both). 

Remarh. 
1. When J: = J; there is a simple, well known unitary transformation which makes the 

off-diagonal matrix elements of J:S;S&, + J;S/S/+l + J/S/Sf+,, non-positive. Obviously 
we can include the term -p(Si . Si+,)’ and still have non-positive off-diagonal matrix 
elements if p > 0. The Perron-Frobenius theorem applies, but does not say much since 
the number of connected components of basis vectors grows with the size of the system. A 
clever argument by Lieb and Mattis shows that in the isotropic case with p > 0, the ground 
state of the Hamiltonian with open boundary conditions is a singlet if the number of lattice 
sites is even and a triplet if the number is odd [6]. 

2. The theorem is optimal in the sense that the ground state can indeed be fourfold 
degenerate. This is the case for the Hamiltonian (3) with ,8 = -f and open boundary 
conditions. Generically, we expect that in the Haldane phase the four lowest eigenvalues 
will be non-degenerate, but the difference between them will be exponentially small in the 
length of the chain. The Haldane gap would be the difference between these eigenvalues 
and the fifth eigenvalue. For the isotropic Hamiltonians these four lowest eigenvalues will 
degenerate into a triplet and a singlet with the difference between them exponentially small 
in the length of the chain. This scenario is based on the S = degrees of freedom that are 
localized near the ends of the chain with open boundary conditions [7, 81. In the isotropic 
case the above is supported by numerical studies [SI, but we should emphasize that none 
of the above speculations have been proved. 

Proof. We have shown that there is a basis in which all of the off-diagonal elements of the 
Hamiltonian are non-positive. To apply the Perron-Frobenius theorem we need to determine 
which basis vectors are connected to which basis vectors by a sequence of non-zero matrix 
elements in the transformed Hamiltonian. 

We partition the set of basis vectors into four subsets. B is the set of basis vectors for 
which the number of +s is even and the number of -s is even. B+ is the set for which 
the number of +s is odd and the number of -s is even. B- is defined similarly. B+- is 
the set for which both the number of +s and the number of -s is odd. We claim that any 
element of one of these four sets is connected to any other element in the same set by a 
sequence of non-zero matrix elements. If the claim is true, then by the Perron-Frobenius 
theorem the restriction of H to each of the subspaces spanned by these four sets of basis 
vectors has a unique ground state. So the ground state of H is at most fourfold degenerate. 
If the Hamiltonian is isotropic, then the ground state may be taken to be an eigenstate of 
the total spin operator. Since the ground state is at most fourfold degenerate it can only be 
a singlet or a triplet (or one of each). 

Now we turn to the proof of the claim. We first consider B .  It contains the basis vector 
which consists of all Os. So it suffices to show that we can connect this configuration to 
any other configuration with an even number of +s and an even number of -S. The matrix 
elements (00) -+ (++) and (00) -+ (--) allow us to introduce the desired number of +s 
and -s into the configuration. We can then remange them into the desired configuration 
using the matrix elements of the form ( A B )  -+ ( B A )  where A + B .  The proof for the 
other three subsets is similar. 0 

The next application is a generalization and much simpler proof of a result in [5]. 
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) denote expectation in any one of the ground states of H for a finite Theorem 3. Let ( 
chain. We assume that the parameters in the Hamiltonian satisfy (2). Then 

(o:~"g(o. 0) > I(s0"y)l 

Proof: By the above calculations, there is a ground state @ of V H V - '  such that 

COP,,,(O, 0)  = (@, To"Tp$) 

We denote a spin configuration for the chain by a. So U stands for a string of +s.-s and 
Os. Let @ ( U )  be the coefficients of the ground state @ with respect to the standard basis. 
In other words, 

Since the matrix elements of the Hamiltonian are all real, we may assume $(a) is real 
valued. By the first lemma and the Perron-Frobenius theorem, the sign of @ ( U )  is constant 
on each of the four subspaces B,  B+, B- and B+-. The operators on the right-hand sides 
of (IO) are block diagonal with respect to these four subspaces, so we can replace @(a) by 
its absolute value and equation (IO) will still hold. Thus we can simply assume @ ( U )  0. 

We now have 

Looking at the matrix elements of 0; and Tp we see that 

I-I 

(U1 -To"nD;q=Iu')  =*(uITo"Tplu') 

I($SP)l < ~@.(U)lll(~')CUITo"y;'lU') = (o:mng(o,o). 

i = l  

and (u(Tp,'Ja') > 0. Hence 

0 
0." 

After applying the unitary operator of [4], the transformed Hamiltonian has a Z, x 2, 
symmetry. The Haldane phase corresponds to the full breaking of this symmetry. When 
we use the transformation V, this symmetry is implemented by the three unitary operators ni Dg, (Y = x ,  y and z. It is easy to check that each of them leaves the Hamiltonian 
VHV-' unchanged. (Note that the product of any two of the operators Dp yields the third 
operator, so these three operators generate the group Zz x Zz.) 

The ZZ x& symmetry is present even when we do not have .I: = J: = Jf. When they 
are all equal and K p  = 0 so that we simply have the isotropic Hamiltonian (3), then the 
transformed Hamiltonian has another symmetry. Equation (9) shows that the transformed 
Hamiltonian is left unchanged by any permutation of the three spin states 0, + and -. So 
we have an additional S3 symmetry. 
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We finally turn to the definition of the unitary operator and the proof of lemma 1. The 
operator V can be written as a product of the non-local unitary operator U of 141 and a 
second local unitary operator W.  A compact representation for the non-local operator was 
found by Oshikawa [Q]: 

The transformation for this paper is V = W U ,  where W = nk Wk. The operator Wk acts 
only on the spin at site k and is given by 

(12) 

We now carry out the computations needed to prove lemma 1. 

Proof of lemma I .  Lemma 2.1 of 151 says 

U S ~ U - ]  = S: n e x p ( i a ~ i )  
k>I 

These equations ate easily verified using the representation (1 1). Some simple computation 
shows 

WkSi W;' = TJ 01 = x ,  7. WkS,'W;' = -iTzDt 

and hence 

Wkexp(inSi)W;' = exp(iaTJ) = D; a = x ,  z .  

So when we apply the unitary operator W to (13) we find 

where the last equality follows from the trivial identity q y D f  = D:qy. The equations in 
the lemma follow easily from (14) and the identities 

TFD; = -Ti 01 = X ,  y ,  z o;Df = D;. U 
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Table 1. Variational bounds on the ground-state energy per site for the usual Heisenberg 
Hamiltonian. The left column is I ,  the number of sites in the support of the function f in 
equation (15). 

Number Number of Variational 
of sites parameters energy 

2 I -1,3886804 
3 3 -1.3975693 
4 8 - 1.4OOO247 
5 20 - 1.4008583 
6 53 -1.401 1941 
7 1 43 -1.401 3411 
8 404 -1.401 4104 
9 1160 -1.401 U 4 8  
IO 340 I - 1.401 4625 

When ,9 = -4 the ground states of the isotropic Hamiltonian (3) may be found exactly and 
are known as the VBS states [IO]. With open boundary conditions there are four such states. 
These states are not given by tensor products of states at each site. However, after the 
unitary transformation of [4], they are simply tensor products. Obviously the same must be 
true when we use the transformation V .  It transforms the VBS subspace into the subspace 
spanned by the four states . . . & 8 @k 8 & . . . where 

81 = 10) + I+) + I-) @z = IO) - I+) + I-) 
8 3  = 10) + I+) - I-) 4 4  = 10) - I+) - I-). 

As observed in [IO], if one uses the VBS states as variational states for the usual 
Heisenbeg Hamiltonian, Ci Si . Sj+l, the resulting bound on the energy is better than that 
obtained using the NCel state as a variational state. If we write the VBS wavefunction 
. . . @ I  8 41 0 41 . . . in the form E, @(a) la), then the wavefunction @(a) is simply 1, 
and the spins are uncorrelated. (Here G ranges over all configurations of +s, -s and Os.) 
One can obtain better variational estimates by using wavefunctions with some comelation 
between the spins. The simplest one is 

where 01 is a parameter and I(G! = ai+,) is 1 if ai = ui+~ and is 0 otherwise. Computing 
the norm of + and the expected value of Si . Si+1 reduces to a simple transfer matrix 
calculation. We then minimize the resulting bound on the energy as a function of a. 

More generally we can let 

where f is any function of I spins. The calculation again reduces to a transfer matrix 
calculation with the dimension of the transfer matrix growing roughly as 3'. The number 
of parameters in the function f also grows like 3'. The resulting variational bounds are 
shown in table 1. The most accurate numerical estimate of the ground-state energy is that of 
White and Huse 1111, based on a density matrix formulation of the renormalization group 
introduced by White [U]. They obtain -1.401484038971(4) for the energy. The best 
estimate based on extrapolations of finite-chain exact diagonalizations is -1.401 485(2) 
[13]. Our best variational bound agrees with the numerical values up to the fifth decimal 
place. 
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